З А С I Д А Н Н Я С Н Т 01.03.19

Steps to organizing your thesis

Steps to organizing your thesis Prepare the **figures and tables**. Write the Methods. Write up the **Results**. Write the **Discussion**. Finalize the Results and Discussion before writing the introduction. This is because, if the discussion is insufficient, how can you objectively demonstrate the scientific significance of your work in the introduction? Write a clear Conclusion. Write a compelling **introduction**. Write the Abstract. Compose a concise and descriptive **Title**. Select **Keywords** for indexing. Write the **Acknowledgements**. Write up the **References**.

Step 1: Prepare the figures and tables

Remember that "a figure is worth a thousand words." Hence, illustrations, including figures and tables, are the most efficient way to present your results. Your data are the driving force of the paper, so your illustrations are critical!

How do you decide between presenting your data as tables or figures? Generally, tables give the actual experimental results, while figures are often used for comparisons of experimental results with those of previous works, or with calculated/theoretical values (Figure 1). Should you use a table or chart?

75R

75U

75U 91.3 5.3 3.2 0.2 0.0 75R 89.8 6.1 3.6 0.5 0.0 00R 69.3 14.2 8.6 6.8 1.1 00R 63.0 29.5 3.4 4.2 0.0 000R 86.7 8.5 4.5 0.2 0.0			ECOLO	GICAL	GROUP	
75R 89.8 6.1 3.6 0.5 0.0 00R 69.3 14.2 8.6 6.8 1.1 00R 63.0 29.5 3.4 4.2 0.0 000R 86.7 8.5 4.5 0.2 0.0	Station	I	п	ш	IV	\mathbf{v}
00R 69.3 14.2 8.6 6.8 1.1 00R 63.0 29.5 3.4 4.2 0.0 000R 86.7 8.5 4.5 0.2 0.0 00 90	75U	91.3	5.3	3.2	0.2	0.0
00R 63.0 29.5 3.4 4.2 0.0 000R 86.7 8.5 4.5 0.2 0.0 00 90 <td< td=""><td>75R</td><td>89.8</td><td>6.1</td><td>3.6</td><td>0.5</td><td>0.0</td></td<>	75R	89.8	6.1	3.6	0.5	0.0
000R 86.7 8.5 4.5 0.2 0.0	200R	69.3	14.2	8.6	6.8	1.1
00 90 80 70 60 50 40 30 20	500R	63.0	29.5	3.4	4.2	0.0
00 90 80 70 60 50 40 30 20	1000R	86.7	8.5	4.5	0.2	0.0
60 50 40 30 20	100 90 80					
50	1000000					
40						
30						
20			1			
	States and the second					
	20					

200R

Stations

500R

1000R

Whatever your choice is, no illustrations should duplicate the information described elsewhere in the manuscript.

Another important factor: figure and table legends must be self-explanatory (Figure 2)

Figures must be self-explanatory

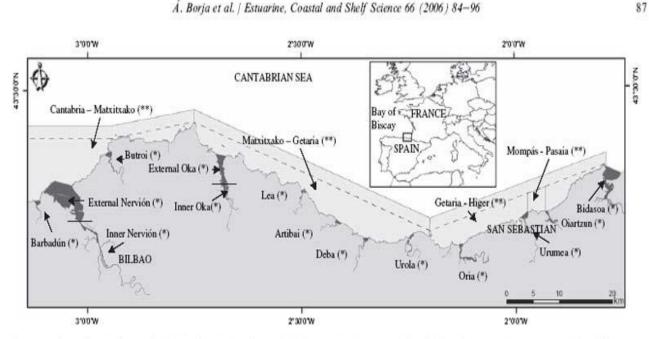
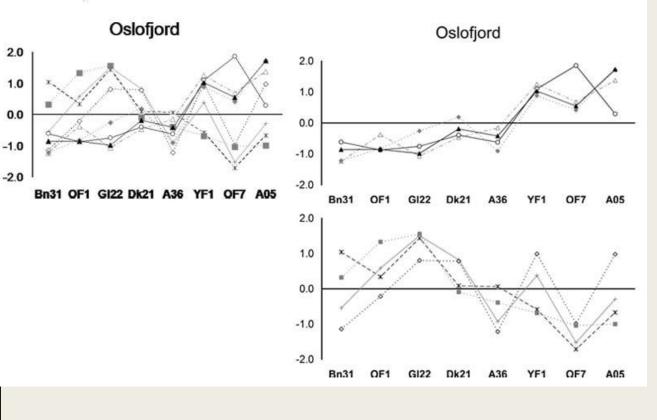


Fig. 1. Location of each of estuarine (*, black colour) and coastal (**, grey colour) water bodies, within the Basque Country. Note: dotted line shows the Basque coastal baseline. Inner and external parts of the Nervión and Oka estuaries are separated by a straight line.

When presenting your tables and figures, appearances count! To this end:


Avoid crowded plots (Figure 3), using only three or four data sets per figure; use well-selected scales.

Think about appropriate axis label size

Include clear symbols and data sets that are easy to distinguish.

Never include long boring tables (e.g., chemical compositions of emulsion sustems or lists of species

Step 2: Write the Methods

- This section responds to the question of how the problem was studied. If your paper is proposing a new method, you need to include detailed information so a knowledgeable reader can reproduce the experiment.
- However, do not repeat the details of established methods; use References and Supporting Materials to indicate the previously published procedures. Broad summaries or key references are sufficient.
- **Title:** Short and informative
- Abstract: 1 paragraph (<250 words)</p>
- Introduction: 1.5-2 pages
- Methods: 2-3 pages
- **Results:** 6–8 pages
- Discussion: 4-6 pages
- **Conclusion:** 1 paragraph
- **Figures:** 6-8 (one per page)
- Tables: 1-3 (one per page)
- **References:** 20-50 papers (2-4 pages)

- For chemicals, use the conventions of the <u>International Union of Pure</u> <u>and Applied Chemistry</u> and the official recommendations of the <u>IUPAC-IUB Combined Commission on Biochemical Nomenclature</u>.
- For species, use accepted taxonomical nomenclature (<u>WoRMS: World</u> <u>Register of Marine Species</u>, <u>ERMS: European Register of Marine</u> <u>Species</u>), and write them always in italics.
- For units of measurement, follow the <u>International System of Units</u> (<u>SI</u>).

1 H hydrogen 1.0076 1.0082	2		Key		I	UPAC	Perio	dic Tal	ole of	the Ele	ement	' S 13	14	15	16	17	2 He helium
3 Li ithium 594 (594, 6, 597)	4 Be beryflium s.or22		atomic numt Symbo name standard domic w									5 B borom toat [10.605, 10.621]	6 C carbon	7 N nitrogen	8 O 0xygen 15 888 15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
11 Na sodium 22.990	12 Mg magnasium 24.30 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al atuminium 28.982	14 Si silicon 28.084, 28.086)	15 P phosphorus 30974	16 S sulfur 308 p2 059, 32 076]	17 CI chlorine 35.46 [35.465, 35.467]	18 Ar argon 39.55 (39.792, 39.1
19 K potassium 39.098	20 Ca calcium 40.076(4)	21 Sc scandium 44.956	22 Ti Banium 47.667	23 V vanadium 50.942	24 Cr chromium 51596	25 Mn manganese 54.928	26 Fe iron 55.645(2)	27 Co cobait 58.933	28 Ni nickel 15.693	29 Cu copper 63.546(3)	30 Zn zinc 65.38(2)	31 Ga gallium 60.723	32 Ge gemarium 72.630(6)	33 As amenic 74922	34 Se selenium 76971(8)	35 Br beomine 1989 (79.501, 79.507)	36 Kr kryptor 63.7962
37 Rb nubidium 85.468	38 Sr strontum 8742	39 Y yttrium 80.906	40 Zr zitconium 91.224(2)	41 Nb nicbium s2.905	42 Mo matybdenum esss	43 Tc technetium	44 Ru rutherium	45 Rh rhodium	46 Pd patadium	47 Ag sive	48 Cd cadmium	49 In indium	50 Sn 5n 118.71	51 Sb antimony 121.76	52 Te tellurium	53 iodine 106.90	54 Xe xenor 191.25
55 Cs caesium 132,91	56 Ba barlum	57-71 Ianthanoids	72 Hf hathum 178,49(2)	73 Ta tantalum	74 W tungsten 18384	75 Re thenium	76 OS os mium 160 (25(3)	77 Ir Iidium 192.22	78 Pt platinum 165.08	79 Au gold 19637	80 Hg mercury 200.99	81 TI Phallium 29.98 (204.98	82 Pb lead	83 Bi bismuth 208.98	84 Po potonium	85 At astatine	86 Rn radon
87 Fr transium	88 Ra radium	89-103 actinoids	104 Rf sutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitherium	110 DS darmstadtum	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl Serovium	115 Mc moscovium	116 Lv Ikermatium	117 Ts termessine	118 Og oganese
đ			57 La	58 Ce	59 Pr	® Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	⁶⁶ Dy	67 Ho	68 Er	69 Tm	70 Yb	L

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

La Ce Pr Nd Pm Sm Eu Gd Tb Dy dysprosium Ho ertium Tm ytterbium 138.91 140.12 140.91 144.24 150.36(2) 151.96 157.25(3) 108.93 162.50 164.93 167.26 168.95 173.05 92 U 96 Cf 89 90. 95 100 101 102 91 93 94 96 97 99 Np Pu Bk Ac Cm Fm Md No Th Pa Am Es actinium unanium thorium protactinium plutonium americium curium beskelium californium einsteinium fermium. mendelevium nobelium 212.04 231.04 238.03

For notes and updates to this table, see www.iupac.org. This version is dated 1 December 2018. Copyright @ 2018 IUPAC, the International Union of Pure and Applied Chemistry.

United Nations . International Year Educational, Scientific and + of the Periodic Table Cultural Organization - of Chemical Elements 1.00

IUPAC

174.97

103

Lr

lawrencium

- Present proper control experiments and statistics used, again to make the experiment of investigation repeatable.
- List the methods in the same order they will appear in the Results section, in the logical order in which you did the research:
- Description of the site
- Description of the surveys or experiments done, giving information on dates, etc.
- Description of the laboratory methods, including separation or treatment of samples, analytical methods, following the order of waters, sediments and biomonitors. If you have worked with different biodiversity components start from the simplest (i.e. microbes) to the more complex (i.e. mammals)
- Description of the statistical methods used (including confidence levels, etc.)
- In this section, avoid adding comments, results, and discussion, which is a common error.

Step 3: Write up the Results This section responds to the question "What have you found?" Hence, only representative results from your research should be presented. The results should be essential for discussion.

However, remember that most journals offer the possibility of adding Supporting Materials, so use them freely for data of secondary importance. In this way, do not attempt to "hide" data in the hope of saving it for a later paper. You may lose evidence to reinforce your conclusion. If data are too abundant, you can use those supplementary materials.

- For the data, decide on a logical order that tells a clear story and makes it and easy to understand. Generally, this will be in the same order as presented in the methods section.
- An important issue is that you must not include references in this section; you are presenting your results, so you cannot refer to others here. If you refer to others, is because you are discussingyour results, and this must be included in the Discussion section

Step 4: Write the Discussion

Take into account the following tips:

■ 1. Avoid statements that go beyond what the results can support.

- 2. Avoid unspecific expressions such as "higher temperature", "at a lower rate", "highly significant". Quantitative descriptions are always preferred (35°C, 0.5%, p<0.001, respectively).</p>
- 3. Avoid sudden introduction of new terms or ideas; you must present everything in the introduction, to be confronted with your results here.
- 4. Speculations on possible interpretations are allowed, but these should be rooted in fact, rather than imagination.

Step 5: Write a clear Conclusion

- This section shows how the work advances the field from the present state of knowledge. In some journals, it's a separate section; in others, it's the last paragraph of the Discussion section. Whatever the case, without a clear conclusion section, reviewers and readers will find it difficult to judge your work and whether it merits publication in the journal.
- A common error in this section is repeating the abstract, or just listing experimental results. Trivial statements of your results are unacceptable in this section.
- You should provide a clear scientific justification for your work in this section, and indicate uses and extensions if appropriate. Moreover, you can suggest future experiments and point out those that are underway.
- You can propose present global and specific conclusions, in relation to the objectives included in the introduction.

Step 6: Write a compelling Introduction

A good introduction should answer the following questions:
What is the problem to be solved?
Are there any existing solutions?
Which is the best?
What is its main limitation?
What do you hope to achieve?

Step 7: Write the Abstract

- The abstract tells prospective readers what you did and what the important findings in your research were. Together with the title, it's the advertisement of your article. Make it interesting and easily understood without reading the whole article. Avoid using jargon, uncommon abbreviations and references.
- You must be accurate, using the words that convey the precise meaning of your research. The abstract provides a short description of the perspective and purpose of your paper. It gives key results but minimizes experimental details. It is very important to remind that the abstract offers a short description of the interpretation/conclusion in the last sentence.
- A clear abstract will strongly influence whether or not your work is further considered.

Step 8: Compose a concise and descriptive title

The title must explain what the paper is broadly about. It is your first (and probably only) opportunity to attract the reader's attention. In this way, remember that the first readers are the Editor and the referees. Also, readers are the potential authors who will cite your article, so the first impression is powerful!

Step 9: Select keywords for indexing

- Keywords are used for indexing your paper. They are the label of your manuscript. It is true that now they are less used by journals because you can search the whole text. However, when looking for keywords, avoid words with a broad meaning and words already included in the title.
- Some journals require that the keywords are not those from the journal name, because it is implicit that the topic is that. For example, the journal *Soil Biology & Biochemistry* requires that the word "soil" not be selected as a keyword.

Step 10: Write the Acknowledgements

Here, you can thank people who have contributed to the manuscript but not to the extent where that would justify authorship. For example, here you can include technical help and assistance with writing and proofreading. Probably, the most important thing is to thank your funding agency or the agency giving you a grant or fellowship.

Step 11: Write up the References

- Typically, there are more mistakes in the references than in any other part of the manuscript. It is one of the most annoying problems, and causes great headaches among editors. Now, it is easier since to avoid these problem, because there are many available tools.
- In the text, you must cite all the scientific publications on which your work is based. But do not over-inflate the manuscript with too many references – it doesn't make a better manuscript! Avoid excessive self-citations and excessive citations of publications from the same region.